"Tecnologías de captura, almacenamiento y usos del CO₂ Soluciones para afrontar el cambio climático" Curso de verano 1 a 5 de julio 2019 Campus de Móstoles. Aula CEI "Energía Inteligente" - URJC

> Manuel Romero IMDEA Energía, Móstoles

SUN to LIQUID

Fuels from concentrated sunlight

Decarbonizing Transport: European Targets

- Policy related frameworks (Renewable Energy Directive, RED 2009)
 - D Binding renewable energy targets by 2020 (10% share in transport)*
 - O Binding climate relevant targets -20% emissions by 2020, -80% emissions by 2050
 - Industry related frameworks (ACARE targets, ATAG targets)
 - Advisory Council for Aviation Research & Innovation in Europe
 - O ACARE Vision 2020 → SRA 2002-2020 (no sustainable fuel targets)
 - ACARE Flightpath 2050 \rightarrow SRIA 2020-2050 (with sustainable fuel targets)
 - Technologies and operations for **75%** CO₂ emission reduction (rel. to **2000, Aircraft**)
 - Air Transport Action Grp. (ATAG) 50% CO₂ emission reduction (rel. to 2005, Global Fleet)

• Policy/industry joint initiatives

• European Advanced Biofuels Flightpath \rightarrow 2 Mio t sustainable biofuel p.a. by 2020

* Fuel suppliers are also required to reduce the greenhouse gas intensity of the EU fuel mix by 6% by 2020 in comparison to 2010. Increased renewable energy target for 2030 from 27% to 32% (all forms of energy use including transport fuels)

The Aviation Target: Reduce CO₂ by 50% by 2050 (rel. to 2005)

 Future GHG emissions are a function of three main factors: (3) zero carbon energy

$$\dot{M}_{\rm CO_2eq}(2050) = \dot{M}_{\rm CO_2eq}(2005) \times \begin{bmatrix} {\rm GROWTH} \\ {\rm in} \\ {\rm RPK} \end{bmatrix} \times \begin{bmatrix} {\rm GAIN} \\ {\rm in} \\ {\rm EFFICIENCY} \end{bmatrix}^{-1} \times \left(1 - \begin{bmatrix} {\rm FRACTION \ of \ 2050's} \\ {\rm "ZERO-CARBON"} \\ {\rm ENERGY} \end{bmatrix} \right)$$

Key Technology: Ceria-based Redox Cycles

Source: Marxer et al, Solar thermochemical splitting of CO_2 into separate streams of CO and O_2 with high selectivity, stability, conversion, and efficiency, Energy Environ. Sci., 2017,10, 1142-1149; see also: <u>http://www.solar-jet.aero/page/media-centre/scientific-publications.php</u>

SUN-to-LIQUID Approach to Solar Fuel

Ambition: unlimited supply of renewable synthetic hydrocarbon fuels

Some process steps already proven on an industrial scale

Lowest technology readiness level for thermochemical conversion and CO₂ capture

SUN-to-LIQUID Ambition

- Move from laboratory to field environment
- Demonstration of complete fuel production cycle in a relevant environment
- Increase TRL from 3 to 5
- Scale-up of thermal power input from 4 kW to 50 kW
- Optimization of reactor geometry and material structure to increase efficiency from 2% to 5-10%
- On-site conversion of produced syngas to hydrocarbons

Key Objectives: Solar Concentration

- Key Objectives: Scale-up and experimental demonstration of the complete StL process chain to liquid hydrocarbon fuels from H₂O, CO₂ and solar energy at a pre-commercial scale H₀ Co₂
- O High flux solar concentrating system
 - 50 kW radiative power, flux of 2500 kW/m² over a 16-cm diameter aperture
 - Field of 169 heliostats, 3 m² each, with 20 – 30 m focal length

Key Objectives: 50 kW Solar Reactor

- O High flux solar concentrating system
 - 50 kW radiative power, flux of 2500 kW/m² over a 16-cm diameter aperture
 - Field of 169 heliostats, 3 m² each, with 20 – 30 m focal length

50 kW solar thermochemical reactor

 Producing syngas via ceria-based thermochemical redox cycle

Dual-Scale Ceria RPC Structures inside Reaction Cavity

Key Objectives: Gas-to-Liquid Plant

- Key Objectives: Scale-up and experimental demonstration of the complete StL process chain to liquid hydrocarbon fuels from H_2O , CO_2 and solar energy at a pre-commercial scale
- High flux solar concentrating system
 - 50 kW radiative power, flux of 2500 kW/m² over a 16-cm diameter aperture
 - Field of 169 heliostats, 3 m² each, with 20 – 30 m focal length

50 kW solar thermochemical reactor

- Producing syngas via ceria-based thermochemical redox cycle
- Gas-to-liquid system
 - Compression and storage of syngas
 - Micro Fischer-Tropsch unit converts syngas to liquid hydrocarbon fuels

CO₂/H₂O

capture/storage

Solar

concentration

	HYPEAR

Thermo-

chemistry

Gas

storage

Fischer-

Tropsch

Com-

bustion

STEPS TO SCALING-UP SOLAR CHEMISTRY

50-300 kW

Optimization of solar concentration systems

 Combined efficiency: Receiver + Power block

$$\eta_{tot_rec} = \eta_{rec} * \eta_{Carnot}$$

• Stagnation temperature:

$$\frac{d\eta_{tot_rec}}{dT} = 0 \quad \longrightarrow \quad$$

Solar Chemical Plant Overview

Cornfield layout

Design and construction of a 50 kW high-flux solar concentration system

Heliostat with facet of 60 m radius (August 2016)

Design and construction of a 50 kW high-flux solar concentration system

Construction completed by end January 2017 (M13)

Testing and characterization of high-flux solar concentration system

• Highest measured power ever achieved: 71.5 kW onto 16-cm aperture (new calorimeter on site), solar noon on 28th June 2018, for a DNI of 800 W/m²

Control Room

Representative Solar Redox Cycle

reduction	oxidation	$ \begin{aligned} I_{reduction, end} & 1 \\ T_{oxidation, start} & 2 \\ \dot{V}_{H_2O} & 71 \\ \dot{V}_{CO_2} & 10 \end{aligned} $	500 °C 900 °C .4 L/mir 0 L/min
14 12 $(1- \operatorname{uim} 1)$ 8	p 1500 T H_2 1400 1300 1200	ressure (bar) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
$\begin{array}{c} 6 \\ - \\ 0 \\ - \\$	CO - 1100 - 1000 - 900 800	Beactor 100.001 IE-4	
0 10 Time	20 30 40 e (min)		2

Experimental Conditions

Specific test validation MS2

Species	Concentration	Flow (SLM)
H ₂	50%	3.13
CO	15%	0.94
CO ₂	25%	1.56
Ar	10%	0.63
total	100%	6.25

Design of GTL plant (FT reactor)

• Fischer Tropsch design

- Annular reactor design with oil heating and cooling
- Operating conditions for synthetic S2L syngas: 20 bar, 210°C
- Production of Liquids and wax

GtL plant: preparation

GtL plant: Fischer-Tropsch reactor

Perspectives: Resource Efficiency

• Area required for 100% substitution of European jet fuel demand

European agricultural area (2005)²: 250 Mha

60 Mha HEFA (rapeseed)³ 20 Mha BTL (woody biomass)³ 1,7 Mha STL (DNI 2000 kWh/m²)

 ¹ EIA (2008), International Energy Annual 2006
 ² FAO (2010), ResourceSTAT-Land 2005
 ³ BHL (2010), The Bauhaus Inventory of Energy Crops Mha: Million Hectare; DNI: Direct Normal Irradiation

Solar Themochemical Fuels: Water Demand

Table 2 Overall direct water footprint for the production of solar thermochemical jet fuel.

	L L ⁻¹ jet fuel	L L ⁻¹ Naphtha	L per functional unit
Mirror cleaning	3.62	3.37	6.54
Thermochemistry	1.66	1.54	2.99
Electricity	2.14	1.99	3.86
Fotal	7.41	6.90	13.39
LOTAI	7.41	0.90	13.

Table 3 Overall indirect water footprint for the production of solar thermochemical jet fuel.

Solar concentration infrastructure	L L ⁻¹ jet fuel	L L ⁻¹ Naphtha	L per functional unit
Heliostats	7.10	6.61	12.83
Tower	0.95	0.89	1.72
Thermochemistry			
Ceria	31.5	29.4	56.9
Alumina	0.0031	0.0029	0.0055
Stee1	0.043	0.040	0.078
Glass	0.011	0.010	0.020
CSP infrastructure	2.70	2.52	4.88
Fischer-Tropsch infrastructure			
Steel	0.0044	0.0041	0.0080
Concrete	0.00062	0.00057	0.0011
Total	42.4	39.4	76.5

• For comparison: Water footprint of biofuels from 500 to 18 000 L L-1 jet fuel

equivalent

Source: C. Falter, R. Pitz-Paal, Water footprint and land requirement of solar thermochemical jet fuel production, Environmental Science and Technology 2017, doi: 10.1021/acs.est.7b02633, accepted for publication.

Perspectives: Resource Efficiency

- Use of biofuels is controversial
 - Biofuels are available (TRL 9) and approved for civil aviation (e.g. FT-SPK, HEFA, AtJ)
 - O Controversial environmental performance
 - Relatively low area specific yield
 - O High water demand
 - Limited GHG reduction potential (LUC)
- Solar fuel production from H_2O and CO_2
 - Large GHG reduction potential
 - Resource efficiency: High yield, no arable land required, very low water consumption
 - Complementary production to biofuels

Data: C. Falter, Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production, Environ. Sci. Technol., 2016, 50 (1)

German Environment Agency (UBA), Power-to-Liquids Potentials and Perspectives for the Future Supply of Renewable Aviation Fuel, 2016, Authors: LBST, Bauhaus Luftfahrt M. S. Wigmosta et al., National microalgae biofuel production potential and resource demand, Water Resour. Res., 47, W00H04, 2011

Area-specific range

• How much CO₂ would be required for 100% substitution with solar jet fuel?

- Stoichiometric demand to substitute current jet fuel: 850 Mt_{co2}
 - 2017 consumption 339 billion liters, specific demand about 3.14 kg_{CO2}/kg_{jet}
- O Adjusted demand: About a factor of two(GtL selectivity towards jet, fugitive losses)
- 2030 scenario: Continued growth at 5% per year
 - Average growth rate during past five years (above historic average)

Substitution target	Stoichiometric demand	Adjusted demand
2017: Jet fuel consumption	850 Mt _{co2}	ca. 1 700 Mt _{co2}
2030 demand (5% growth/year)	1 600 Mt _{co2}	3 200 Mt _{co2}
Current diesel for road freight	2 000 Mt _{co2}	4 000 Mt _{co2}
Current oil consumption	14 000 Mt _{co2}	NA

Sources: Jet fuel: IATA, *Economic Performance of the Airline Industry - 2017 mid-year report;* Road freight: IEA/OECD, *The Future of Trucks Implications for energy and the environment, 2017;* Crude Oil: *BP Statistical Review of World Energy June 2017* Assumptions: Stoichiometry for CH_2 synthesis (14 amu) from CO_2 (44 amu): $CO_2 + H_2O \rightarrow "CH_2" + 3/2 O_2$; density jet 0.8 kg/liter

Impact: Emission Reduction Potential

 Consideration of further carbon emissions along production chain can result in higher life-cycle emission compared to conventional fuel

Contact: Dr. Andreas Sizmann

Tel: +49 (0)89 307 4849-38 Address: Bauhaus Luftfahrt e.V. Willy-Messerschmitt-Str. 1 82024 Taufkirchen Germany

Email:

andreas.sizmann@bauhaus-luftfahrt.net valentin.batteiger@bauhaus-luftfahrt.net Web: www.sun-to-liquid.eu

A project gathering **7 partners** from **5 European countries**:

This work was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0330

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654408