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Decarbonizing Transport: European Targets

Policy related frameworks (Renewable Energy Directive, RED 2009)
Binding renewable energy targets by 2020 (10% share in transport)* 

Binding  climate relevant  targets -20% emissions by 2020, -80% emissions by 2050 

Industry related frameworks (ACARE targets, ATAG targets)
Advisory Council for Aviation Research & Innovation in Europe

ACARE Vision 2020  SRA 2002-2020 (no sustainable fuel targets)

ACARE Flightpath 2050  SRIA 2020-2050 (with sustainable fuel targets)

Technologies and operations for 75% CO2 emission reduction (rel. to 2000, Aircraft)

Air Transport Action Grp. (ATAG) 50% CO2 emission reduction (rel. to 2005, Global Fleet)

Policy/industry joint initiatives
European Advanced Biofuels Flightpath 2 Mio t sustainable biofuel p.a. by 2020

* Fuel suppliers are also required to reduce the greenhouse gas intensity of the EU fuel mix by 6% by 2020 in comparison to 2010.
Increased renewable energy target for 2030 from 27% to 32% (all forms of energy use including transport fuels)
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The Aviation Target: 
Reduce CO2 by 50% by 2050 (rel. to 2005)

Future GHG emissions are a function of three main factors: (3) zero carbon 
energy

ATAG target requires
ca. 550 Mt/a

sustainable aviation fuel with
<10% carbon intensity

compared to
conventional fuel

by 2050

100% substitution
of fossil kerosene: 
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Key Technology: Ceria-based Redox Cycles

State-of-art in laboratory: ηsolar-to-CO = 5.25% for thermochemical CO2 splitting

Source: Marxer et al, Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, 
and efficiency, Energy Environ. Sci., 2017,10, 1142-1149; see also: http://www.solar-jet.aero/page/media-centre/scientific-publications.php

Endothermic reduction: Exothermic oxidation:

http://www.solar-jet.aero/page/media-centre/scientific-publications.php
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SUN-to-LIQUID Approach to Solar Fuel

Ambition: unlimited supply of renewable synthetic hydrocarbon fuels

Some process steps already proven on an industrial scale

Lowest technology readiness level for thermochemical conversion and CO2 capture 
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SUN-to-LIQUID Ambition

Move from laboratory to field
environment

Demonstration of complete fuel
production cycle in a relevant 
environment

Increase TRL from 3 to 5 

Scale-up of thermal power input from
4 kW to 50 kW

Optimization of reactor geometry and 
material structure to increase
efficiency from 2% to 5-10%

On-site conversion of produced
syngas to hydrocarbons
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Key Objectives: Solar Concentration

Key Objectives: Scale-up and experimental demonstration of the complete StL process 
chain to liquid hydrocarbon fuels from H2O, CO2
and solar energy at a pre-commercial scale

High flux solar concentrating system
50 kW radiative power, flux of 2500 kW/m2

over a 16-cm diameter aperture
Field of 169 heliostats, 3 m2 each, 
with 20 – 30 m focal length

50 kW solar thermochemical reactor
Producing syngas via ceria-based 
thermochemical redox cycle

Gas-to-liquid system
Compression and storage of syngas
Micro Fischer-Tropsch unit converts 
syngas to liquid hydrocarbon fuels



8

Key Objectives: Scale-up and experimental demonstration of the complete StL process 
chain to liquid hydrocarbon fuels from H2O, CO2
and solar energy at a pre-commercial scale

High flux solar concentrating system
50 kW radiative power, flux of 2500 kW/m2

over a 16-cm diameter aperture
Field of 169 heliostats, 3 m2 each, 
with 20 – 30 m focal length

50 kW solar thermochemical reactor
Producing syngas via ceria-based 
thermochemical redox cycle

Key Objectives: 50 kW Solar Reactor



9

Key Objectives: Gas-to-Liquid Plant

Key Objectives: Scale-up and experimental demonstration of the complete StL process 
chain to liquid hydrocarbon fuels from H2O, CO2
and solar energy at a pre-commercial scale

High flux solar concentrating system
50 kW radiative power, flux of 2500 kW/m2

over a 16-cm diameter aperture
Field of 169 heliostats, 3 m2 each, 
with 20 – 30 m focal length

50 kW solar thermochemical reactor
Producing syngas via ceria-based 
thermochemical redox cycle

Gas-to-liquid system
Compression and storage of syngas
Micro Fischer-Tropsch unit converts 
syngas to liquid hydrocarbon fuels



STEPS TO SCALING-UP SOLAR CHEMISTRY

30-50 kW

300-3000 kW 50-300 kW

1-5 kW



Optimization of solar 
concentration systems

Combined efficiency: Receiver + 
Power block
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Solar Chemical Plant Overview

Solar 
Reactors

Gas-to-Liquid 

Flux Measurement System

Control Room

Heliostat 
Field

169 facets
250 kW

Solar 
Tower
15 m

50 m
50 m

Mostoles, Spain

N
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 SoA CSP

Field density above 45% leads to 
optical efficiency around 70%
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8.37

6.58

6.10

5.69

The field layout was optimized 
for the constrained land, a 
square plot of 50x50 m2.

“Ultra-Modular 500m2 Heliostat Field for 
High Flux/High Temperature Solar-Driven 
Processes,” SolarPACES 2016 Conference, 
11-14 October 2016, Abu Dhabi. 

Cornfield layout
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Design and construction of a 50 kW high-flux solar 
concentration system

Heliostat with facet of 60 m radius (August 2016)

Dimensions: 1605 x 1900 mm x 3 mm
Fresh reflectivity: 94.3% average (93.8% minimum) 
Low iron glass
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Design and construction of a 50 kW high-flux solar 
concentration system

Construction completed by
end January 2017 (M13)
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Testing and characterization of high-flux solar 
concentration system 

Highest measured power ever achieved: 71.5 kW onto 16-cm aperture (new 
calorimeter on site), solar noon on 28th June 2018, for a DNI of 800 W/m2
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Control Room
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Experimental Conditions
Treduction, end 1500 °C
Toxidation, start 900 °C
�̇�𝑉H2O 71.4 L/min
�̇�𝑉CO2 10 L/min

Representative Solar Redox Cycle

reduction oxidation
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Specific test validation MS2
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Gas-to-liquid plant

Compression 
and buffer

Steam
reformer

Fischer-Tropsch reactor
and product separationSolar Syngas
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Fischer Tropsch design
Annular reactor design with 
oil heating and cooling

Operating conditions for
synthetic S2L syngas: 20 bar, 
210°C

Production of Liquids and wax

Design of GTL plant (FT reactor)
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GtL plant: preparation

compressor

Gas drying
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GtL plant: Fischer-Tropsch reactor

Fischer Tropsch reactor

High pressure/ 80°C
separator

Low pressure/ 80°C
separator

Low pressure/ RT
separator
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Perspectives: Resource Efficiency

Area required for 100% substitution of European jet fuel demand

8 %

0,7 %

24 % European agricultural area  
(2005)2: 250 Mha

1 EIA (2008), International Energy Annual 2006
2 FAO (2010), ResourceSTAT-Land 2005
3 BHL (2010), The Bauhaus Inventory of Energy Crops
Mha: Million Hectare; DNI: Direct Normal Irradiation

24 % 8 %

60 Mha HEFA (rapeseed)3

20 Mha BTL (woody biomass) 3

1,7 Mha STL (DNI 2000 kWh/m2)

0,7 %
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Solar Themochemical Fuels: Water Demand

Source: C. Falter, R. Pitz-Paal, Water footprint and land requirement of solar thermochemical jet fuel production, 
Environmental Science and Technology 2017, doi: 10.1021/acs.est.7b02633, accepted for publication.

For comparison: Water footprint of biofuels from 500 to 18 000 L L-1 jet fuel 
equivalent 
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Perspectives: Resource Efficiency

Use of biofuels is controversial
Biofuels are available (TRL 9) and approved
for civil aviation (e.g. FT-SPK, HEFA, AtJ)

Controversial environmental performance

Relatively low area specific yield

High water demand

Limited GHG reduction potential (LUC)

Solar fuel production from H2O and CO2

Large GHG reduction potential

Resource efficiency: High yield, no arable
land required, very low water consumption

Complementary production to biofuels

Data: C. Falter, Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production, Environ. Sci. Technol., 2016, 50 (1)
German Environment Agency (UBA), Power-to-Liquids Potentials and Perspectives for the Future Supply of Renewable Aviation Fuel, 2016, Authors: LBST, Bauhaus Luftfahrt
M. S. Wigmosta et al., National microalgae biofuel production potential and resource demand, Water Resour. Res., 47, W00H04, 2011

Algae
open pond

BtL
poplar

HEFA
jatropha

StL
(projected)

0 2000 4000 6000 8000
Mileage Airbus 320neo (NM/(ha a))

Relative water demand
(volume representation)

Area-specific range
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Scale of CO2 demand for solar fuel production

How much CO2 would be required for 100% substitution with solar jet fuel?
Stoichiometric demand to substitute current jet fuel: 850 MtCO2 

2017 consumption 339 billion liters, specific demand about 3.14 kgCO2/kgjet

Adjusted demand: About a factor of two (GtL selectivity towards jet, fugitive losses)

2030 scenario: Continued growth at 5% per year

Average growth rate during past five years (above historic average)

Substitution target Stoichiometric demand Adjusted demand

2017: Jet fuel consumption 850 MtCO2 ca. 1 700 MtCO2

2030 demand (5% growth/year) 1 600 MtCO2 3 200 MtCO2

Current diesel for road freight 2 000 MtCO2 4 000 MtCO2

Current oil consumption 14 000 MtCO2 NA

Sources: Jet fuel: IATA, Economic Performance of the Airline Industry - 2017 mid-year report; Road freight: IEA/OECD, The Future of Trucks 
Implications for energy and the environment, 2017; Crude Oil: BP Statistical Review of World Energy June 2017
Assumptions: Stoichiometry for CH2 synthesis (14 amu) from CO2 (44 amu): CO2 + H2O → “CH2” + 3/2 O2 ; density jet 0.8 kg/liter
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Impact: Emission Reduction Potential

Source: C. Falter, V. Batteiger, A. Sizmann; Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production,
Environ. Sci. Technol., 2016, 50 (1)

Consideration of further carbon emissions along production chain can result in higher 
life-cycle emission compared to conventional fuel 

Cost reduction by 32 ct/L
Baseline, air capture: 100 €/tCO2
Natural gas plant:        40 €/tCO2

Emissions increase from 20% 
to 121% vs. conventional jet fuel
(emission allocation on energy basis)
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