
Grupo de Ingeniería Química y Ambiental

Tecnologías de Adsorción para la Captura de CO₂

Eloy S. Sanz Pérez

Departamento de Tecnología Química, Energética y Mecánica Universidad Rey Juan Carlos

> Tecnologías de captura, almacenamiento y usos del CO₂ Curso de verano (URJC) 02_07_2019

Panorama energético mundial. Mal comienzo

Consumo mundial de energía 1965-2017

The data visualization is taken from Our/WorldinData.org. There you find the raw data and more visualizations on this topic.

INTRODUCCIÓN

Soluciones. Eficiencia energética y 100% RE

Carbon emission intensity of economies

Carbon dioxide (CO₂) intensity of economies measured in kilograms of CO₂ per unit GDP (2011 international-\$).

	Objetivos	Procedimiento	Resultados	Conclusiones
		Ward and		
Capt	ura de CO ₂	: How greer	n dan bladk	be?
Artículo	s científicos	A State		
5000 - Número de p 4000 -	ublicaciones (Scopus)			
3000 - 2000 -				
1000 - 0	مرب	0 2020		
	Ano			

	syngas (precombustion)	oxy-fuel combustion	flue gas (postcombustion)
pressure (atm)	>5	>50	1
temperature (°C)	>100	<50	<100
CO ₂ concentration (vol %)	~35	>90	4-14

Hidróxidos Alcalinos y Alcalino-térreos (1/2)

Carbonatación-calcinación

- Bajo coste de materias primas. Eliminación simultánea de SO₂
- Elevado coste energético

Hidróxidos Alcalinos y Alcalino-térreos (2/2)

Proceso ~Kraft (aq)

Reacciones Involucradas

Absorber: 2NaOH + $CO_2 \rightarrow Na_2CO_3 + H_2O$ $\Delta H^\circ = -109.4 \text{ kJ mol}^{-1}$

Causticizer: Na₂CO₃ + Ca(OH)₂ → 2NaOH + CaCO₃ $\Delta H^{\circ} = -5.3 \text{ kJ mol}^{-1}$

Calciner: $CaCO_3 \rightarrow CaO + CO_2$ $\Delta H^o = +179.2 \text{ kJ mol}^{-1}$

Slaker: CaO + H₂O \rightarrow Ca(OH)₂ $\Delta H^{\circ} = -64.5 \text{ kJ mol}^{-1}$

• Posibilidad de emplear KOH en vez de NaOH, pero resulta más caro.

• Contacto NaOH-aire/gases de combustion: lecho fijo o torre spray.

Captura Directa del Aire (Direct Air Capture)

INTRODUCCIÓN

Zeolitas

ABW	ACO	AEI	AEL	AEN	AET	AFG	AFI	AFN	AFO	AFR	AFS	AFT	AFV	AFX
AFY	AHT	ANA	APC	APD	AST	ASV	ATN	ΑΤΟ	ATS	ATT	ATV	AVE	AVL	AWO
AWW	ВСТ	BEC	BIK	BOF	BOG	BOZ	BPH	BRE	BSV	CAN	CAS	CDO	CFI	CGF
CGS	CHA	-CHI	-CLO	CON	CSV	CZP	DAC	DDR	DFO	DFT	DOH	DON	EAB	EDI
EEI	EMT	EON	EPI	ERI	ESV	ETL	ETR	EUO	EWS	EZT	FAR	FAU	FER	FRA
GIS	GIU	GME	GON	G00	HEU	IFO	IFR	-IFT	-IFU	IFW	IFY	IHW	IMF	IRN
IRR	-IRY	ISV	ITE	ITG	ITH	ITR	ПТ	-ITV	ITW	IWR	IWS	IWV	IWW	JBW
JNT	JOZ	JRY	JSN	JSR	JST	JSW	KFI	LAU	LEV	LIO	-LIT	LOS	LOV	LTA
LTF	LTJ	LTL	LTN	MAR	MAZ	MEI	MEL	MEP	MER	MFI	MFS	MON	MOR	MOZ
MRT	MSE	MSO	MTF	MTN	MTT	MTW	MVY	MWF	MWW	NAB	NAT	NES	NON	NPO
NPT	NSI	OBW	OFF	око	OSI	050	OWE	-PAR	PAU	PCR	PHI	PON	POR	POS
_													1 UK	100
PSI	PUN	PWN	PWO	PWW	RHO	RON	RRO	RSN	RTE	RTH	RUT	RWR	RWY	SAF
PSI SAO	PUN SAS	PWN SAT	PWO SAV	PWW SBE	RHO SBN	-RON SBS	RRO SBT	RSN SEW	RTE	RTH SFF	RUT SFG	RWR	RWY SFN	SAF SFO
PSI SAO SFS	PUN SAS SFW	PWN SAT SGT	PWO SAV SIV	PWW SBE SOD	RHO SBN SOF	-RON SBS SOR	RRO SBT SOS	RSN SEW SOV	RTE SFE SSF	RTH SFF SSY	RUT SFG STF	RWR SFH STI	RWY SFN STT	SAF SFO STW
PSI SAO SFS -SVR	PUN SAS SFW SVV	PWN SAT SGT SWY	PWO SAV SIV SZR	PWW SBE SOD TER	RHO SBN SOF THO	-RON SBS SOR TOL	RRO SBT SOS TON	RSN SEW SOV TSC	RTE SFE SSF TUN	RTH SFF SSY UEI	RUT SFG STF UFI	RWR SFH STI UOS	RWY SFN STT UOV	SAF SFO STW UOZ

www.europe.iza-structure.org

Conclusiones

Metal Organic Frameworks (MOFs)

Resultados

Conclusiones

Carbones activados

	etivos Pro	cedimiento	Resultados	Conclusiones
Captur	a Post-con	nbustión	. T ecnología	S
Absorció	n		<u>Adsorción</u>	
 ✓ Empelados actualment MEA, DEA, MDEA ✗ Corrosión ✗ Degradación de aminas ✗ Evaporación de aminas ✗ Consumo energético 	e a gran escala	Adsorbent $\star P_{CO_2} = 0,2$	Zeolite (Estructura FAU) Carbón Activado	Gases and chemicals Activated Carbon Pores Pores Activated Carbon adsorbs gases and chemicals
		Adsorbent ✓ Menor ✓ Aminas ✓ Regener	es porosos con grup oxicidad / Corrosivi inmovilizadas: meno ación más económi	dad CO ₂ cos pérdidas

1181

152

21

1,18

0,96

SBA-PE-17 e

HMS-12 c

102

0,70

GS

	Introduction	Objectives	Proc	edure	RES	ULTADOS	Conclusiones
		Materia	les Me	soest	ructura	ados	
q (mg CO_2 /g ads.)		CO ₂ puro, 45°C		 I so ads Cap dep Cap 	termas ca orción fís pacidad d pendiente pacidades	aracteríst sica e adsorci e de las pi s de adsoi	ticas de la ón rop. texturales rción bajas
		Muestra	S _{BET} (m²/g)	D _P (Å)	V _P (cm³/g)	q _{co₂} (mg/g)	C _{BET}
		SBA-15	692	90	1,03	21,8	145
		AI-SBA (60)	813	130	1,26	20,4	97
		SBA-PE-17 e	428	152	1,18	11,7	76
		HMS-12 c	1181	21	0,96	16,2	38

263

GS

0,70

119

9,7

	Introduction	Objectives	Proc	edure	RESU	JLTADOS	Conclus	siones
		Materia	les Mes	soes	tructura	ados		
	80-	CO ₂ puro, 45°C		• Isc ads	otermas ca sorción fís	aracteríst sica	ticas de l	а
ads.)	60-			• Ca de	oacidad d oendiente	e adsorci de las pi	ón rop. text	urales
CO ₂ /g :	40-		* **	• Caj	oacidades	de adsoi	rción baj	as
d (mg	20-	* *				\downarrow		
	0 1	2 3 4	5 6	5	Funcion gru	alizació pos ami	n con no	
		P (bar)						
		Muestra	S _{BET} (m²/g)	D _P (Å)	V _P (cm³/g)	q _{co₂} (mg/g)	C _{BET}	
		SBA-15	692	90	1,03	21,8	145	
		AI-SBA (60)	813	130	1,26	20,4	97	
		SBA-PE-17 e	428	152	1,18	11,7	76	
		HMS-12 c	1181	21	0,96	16,2	38	
		GS	263	102	0,70	9,7	119	36

Funcionalización de Soportes [1/2]. Anclaje

Anclaje /Grafting

- Enlaces covalentes con grupos ESi-OH superficiales.
- Grupos amino disponibles para reacciones.

AP (N)

ED (NN)

DT (NNN)

Funcionalización de Soportes [2/2]. Impregnación

- Incorporación física en todo el volumen de poro
- La superficie específica o la concentración de grupos =SiOH no limitan la incorporación
- Mayor incorporación orgánica
- Posibilidad de emplear cualquier molécula

Introductio	n Objectives	Proce	edure	RESULTAI	bos 🗌	Conclusiones
Influe	encia de la Te	mperat	ura en	la Adso	orción	de CO ₂
120- 90- (spe 60- 0- 0- -30- -60- 20-40	60 80 100 120 140 1 Temperatura (⁰C)					
	Muestra	N	q (mg CO ₂ /g a	ads)	
		(% p/p)	25 °C	110 °C	Δ q _T (%	.)
	SBA-15	-	14,2	1,2	-92	
	SBA-AP (N)-6	3,7	61,8	20,5	-67	
	SBA-DT (NNN)-6	7,3	76,6	25,9	-66	
	SBA-PEI (50)	13,5	75,8	51,0	-33	

Introduction

Influencia de la Temperatura en la Adsorción de CO₂

Efectos de la Temperatura

↓ Negativos: Equilibrios de adsorción física y química.

† Positivos: Velocidad de reacción, disposición y movilidad de los grupos amino, difusión del CO₂.

Muestre	N	q (mg CO_2 /g ads)				
Muestia	(% p/p)	25 °C	110 °C	Δq _T (%)		
SBA-15	-	14,2	1,2	-92		
SBA-AP (N)-6	3,7	61,8	20,5	-67		
SBA-DT (NNN)-6	7,3	76,6	25,9	-66		
SBA-PEI (50)	13,5	75,8	51,0	-33		
SBA-TEPA (50)	15,4	97,7	81,9	-16		

RESULTADOS

Conclusiones

Condiciones Industriales. Dilución del CO₂

Objectives

Procedure

RESULTADOS

Conclusiones

Condiciones Industriales. Dilución del CO₂

La relación q_{DIL}/q_{PURO} aumenta con el contenido de nitrógeno

Mayor influencia de la adsorción química

Condiciones Industriales. Ciclos de reutilización

Intr	- A I	intic	n n
		л.н.	лі
	000		

Conclusiones

Doble Funcionalización

Anclaje

- **× Bajo** contenido en N
- ✓ Elevada eficacia
- ✓ Grupos amino fijos

Impregnación

- \checkmark Alto contenido en N
- × Baja eficacia
- **×** Grupos amino móviles

Doble Funcionalización

- ✓ Alto contenido en N
- ✓ Elevada eficacia
- ✓ Grupos amino fijos y móviles

Estrategias para aumentar capacidad y eficacia de adsorción

Aumentar contenido anclado Aumentar contenido impregnado

Tiempo de Secado (h)

	Introduction	Objectives	Procedure	RESULTADOS	Conclusiones
	E	studio de la	s Condicion	es de Seca	oc
F (R)	С=0 VC=0 VN=0 VN=0 750 1700	110°C, A NH NH ₂ 85 h Tiempo de secado	Aire	С-он -0-Si NH -0-ОН -0-	110°C, Aire NH NH ₂ VC=0 VN=0 VN=0 1600 1550 a (cm ⁻¹)
	NUM	ero de onda (cm ⁻)			
		Nueva a 1.60	a banda 67 cm ⁻¹	Enlace C	es tipo urea =O-NH

Equipo CO₂ URJC

@elmanyana

Premios

Institution of Chemical Engineers

Institution of Chemical Engineers (IChemE). Medalla Nicklin 2017 a la investigación en ingeniería

European Federation of Chemical Engineering Europäische Föderation für Chemie-Ingenieur-Wesen Fédération Européenne de Génie Chimique

European Federation of Chemical Engineering (EFCE) Excellence Award. Mejor Tesis en Separación 2010-2013.

Plataforma Tecnológica Española del CO_2 Mejor Tesis en Tecnologías de Captura y Almacenamiento de CO_2 (CCS) 2012-2014.

TWEET

TWFFT

TWFFT

Gracias por vuestra atención

ptec

Plataforma Tecnológica Española del CO2

Universidad Rey Juan Carlos Premio Extraordinario de Doctorado.

www.giqa.es/eloy.sanz