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Abstract—Energy efficiency has been a leading issue in Wireless
Sensor Networks (WSNs) and has produced a vast amount of
research. Although the classic tradeoff has been between quality
of gathered data versus lifetime of the network, most works gave
preference to an increased network lifetime at the expense of
the data quality. A common approach for energy efficiency is
partitioning the network into clusters with correlated data, where
representative nodes simply transmit or average measurements
inside the cluster. In this work, we explore the joint use of in-
network processing techniques and clustering algorithms. This
approach seeks both high data quality with a controlled number
of transmissions using an aggregation function and an energy
efficient network partition, respectively. The aim of this com-
bination is to increase energy efficiency without sacrificing the
data quality. We compare the performance of the Second-Order
Data-Coupled Clustering (SODCC) and Compressive-Projections
Principal Component Analysis (CPPCA) algorithm combination,
in terms of both energy consumption and quality of the data
reconstruction, to other combinations of state of the art clustering
algorithms and in-network processing techniques. Among all the
considered cases, the SODCC+CPPCA combination revealed a
perfect balance between data quality, energy expenditure and
ease of network management. The main conclusion of this paper
is that the design of WSN algorithms must be processing-oriented
rather than transmission-oriented, i.e., investing energy on both
clustering and in-network processing algorithms ensures both
energy efficiency and data quality.

Keywords—Wireless sensor networks, Data-coupled clustering,
Energy efficiency, Data quality

I. INTRODUCTION

In recent years, the promise of large scale Wireless Sen-
sor Network (WSN) applications have been seen as already
achieved or just about to be realized. However, large problems
remain unsolved as WSN performance metrics are highly
application dependent. Although there exist energy harvesting
technologies, their efficiency is highly dependent on the node
usage. Therefore, sensor nodes may have no alternative for the
power source and energy efficiency is required for extended
lifetime. Thus, we observe that the most largely addressed
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issue in the scientific literature is the energy operation [1],
especially in the design of clustering algorithms for WSN.

Network partitioning using a clustering algorithm improves
the total capacity of the network and also provides scalabil-
ity [2], [3]. Most clustering algorithms base their decisions
on seeking low energy consumption during the formation
of the clusters, leaving aside what happens afterwards, i.e.
data measurement and their transmission to the Data Fusion
Center (DFC). In other words, using little energy to cluster the
network does not guarantee a high energy efficiency during the
complete WSN lifetime.

Several in-network processing algorithms have been de-
veloped for WSN, with the aim of efficiently aggregating
measured data such that the data recovered by the DFC is
as similar as possible to the measured data. In this case,
the tradeoff between the data quality and the amount of
transmitted bytes to the DFC (i.e. the compression ratio) has
to be considered. Usually less compression leads to higher
data quality, but also leads to higher amount of transmissions
and more energy consumption. Data transmission is the most
expensive task in a WSN from an energy point of view [4].

Recently, the authors proposed the Second-Order Data-
Coupled Clustering (SODCC) algorithm, specifically designed
to attend the needs of the in-network processing algorithm [5],
[6]. The decision criterion of SODCC is based on measured
data statistics (i.e. second order moments), to obtain the best
cluster configuration for an in-network processing algorithm
that uses the same data statistics. In this way, the data pro-
cessing is more efficient as the autocorrelation matrix of the
data measured by the cluster is well posed.

The purpose of this work is to further analyze SODCC
and to determine whether the design of a clustering algorithm
attending to the needs of the in-network processing algorithm,
in general, and the design of the SODCC algorithm, in
particular, are beneficial both from the energy and the data
quality points of view. We simulate the operation of a WSN
with several clustering and in-network processing algorithms
and show that SODCC approach is worth of further research
as we obtain promising results both in energy consumption
and data quality.

In the following, Section II relates the state of the art of
clustering and in-network processing algorithms for WSN.
Section III describes the network model and the different algo-
rithms used in this work. The performed computer simulations
and the obtained outcomes are explained in Section IV, and the
obtained results are analyzed in Section V. Finally, Section VI
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summarizes the conclusions of this work.

II. STATE OF THE ART

During the last decade, there has been significant research
in clustering techniques for WSNs and their benefits in terms
of energy efficiency. Multiple available algorithms include the
objective of saving energy during the formation of the clusters
[1], [7]. Even though different metrics such as algorithmic
computational complexity, scalability, load balancing, . . . are
usually examined as possible tradeoffs to energy efficiency,
the quality of the data obtained at the DFC is not a common
metric for comparison.

The quality of the retrieved data is addressed by some
clustering algorithms, along with energy saving properties.
Using the correlation of the measurements, other authors [8]
propose a combination of distributed in-network processing
algorithms and centralized heuristics that effectively selects
correlated small clusters. It is shown that it is possible to
obtain a reconstruction error lower than 10% during the WSN
lifetime. But the energy efficiency of their proposal is only
evaluated in terms of reduction in number of transmitted
messages, and the energy cost of in-network processing is not
taken into account. In [9], a similar approach is adopted to
perform distributed WSN clustering by exploiting the spatial
correlation of the measured data. Simulations with synthetic
scenarios show that the spatial patterns of measured data are
recognized with high accuracy (> 90%) in comparison with
other clustering techniques such as Low Energy Adaptive Clus-
tering Hierarchy (LEACH) [10], [11]. However, the authors
fail to evaluate the energy efficiency despite the apparent
high algorithmic complexity of the approach. An alternative
approach that exploits time correlation is proposed in [12],
where cluster scheduling is optimized to adjust surveillance
time series and, therefore, save energy in the transmission
process. A detailed evaluation of the quality of the retrieved
data is performed, and a realistic architecture for the nodes
is proposed, but no systematic analysis of energy efficiency is
performed. Geostatistics data reconstruction techniques such as
Kriging are considered in [13] by means of the Spatial Kluster
Analysis by Tree Edge Removal (SKATER) algorithm [14].
SKATER is analyzed in terms of reconstruction error, but again
energy efficiency analysis is omitted.

In-network processing algorithms for WSN also try to take
advantage of the spatial correlation of the data in order
to increase the networks lifetime. Representative examples
are the Approximate Data Collection or Approximate Data
Gathering (ADG) approaches [15], [16], where representative
nodes are selected for each cluster, and higher reconstruction
error is traded for higher energy efficiency and WSN lifetime.
The reconstruction error is generally dealt with prediction
techniques, e.g. in Adaptive Sampling Approach (ASAP) [17]
where the data is extracted from the network using model-
based prediction and reducing the amount of transmissions.
Synthetic examples are used to assess both energy consumption
and data quality, but the cost of this centralized selection of
representative nodes is not analyzed. A similar prediction-
oriented approach is adopted in [18] but with a less thorough
approach in terms of reconstruction error.

In the present work, both the energy efficiency and the
quality of the reconstructed data are assessed for different
clustering and in-network processing algorithms combinations.
With this analysis we show that an energy-saving oriented
design for an algorithm does not lead to overall energy
efficiency as multiple factors not considered a priori act as
energy sinks. For example, the main drawback for LEACH is
the requirement of single-hop communications, while for ADG
the issues arise if the representative nodes are not properly
selected.

III. SYSTEM MODEL

The network model used in this work is first described.
In short, the WSN is modeled by a graph, the nodes are
clustered using a specific clustering algorithm and a local
data processing is performed in each cluster. Following, in
separate subsections, we describe all the clustering and in-
network processing algorithms used in this work.

A. Network model
Consider a WSN with N nodes and diverse wireless connec-

tion between them. During the WSN operation, each of the N
nodes takes a measurement every Ts time instants, obtaining
a total of M data measurements per node.

Regarding the network organization, the WSN is divided
into clusters, to avoid the capacity limitations of a flat
WSN [2]. The trend in this field is that of self-organized
algorithms, that usually try to cluster the network “on-the-
fly” while seeking to reduce at least one of the following
limited resources: 1) energy; 2) bandwith; or 3) computational
capabilities.

In addition, each cluster of the WSN performs data pro-
cessing in order to reduce the number of data transmissions.
This local processing can range from the simplest possible
(i.e. calculation of the average value of a group of nodes
[19]) to more sophisticated algorithms (i.e. discovery of local
data correlation [15]). The tradeoff between the use of the
computational resources and the improvement of the trans-
mission efficiency has to be included in the choice of the
processing algorithm, as an unfortunate choice can lead to
network flooding and high energy consumption.

B. Clustering algorithms
We use three different clustering algorithms, selected for

the following reasons: 1) LEACH [10], [11], designed to
be energy-efficient and to increase the network lifetime; 2)
Persistent [20], designed to balance the cluster sizes while
the amount of control messages transmitted is low; and 3)
SODCC [5], [6], designed to cluster the network using the
second-order statistics of the measured data, obtaining a data-
coupled clustering configuration.

1) LEACH: is one of the most popular clustering techniques
for WSNs [1], [21]. The most important feature of LEACH
is that the energy consumption is evenly distributed among
all the nodes in the network. The operation is the following:
(i) nodes independently decide to become Cluster Head (CH)
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with an a priori known probability p and broadcast their
decision; (ii) all non-CH nodes join the cluster whose CH is
reached with the least communication energy. The CHs are
rotated and the cluster configuration is changed periodically
(each “round”), in order to balance the load and the energy
consumption. A node that is CH in a given round cannot be
again CH in the next 1/p rounds. One of the most significant
constraints of LEACH is the fact that all communications have
to be single-hop, meaning that all nodes have to be able to
communicate to all the other nodes in the WSN. Moreover, as
all nodes are susceptible to be CH, all nodes have to be able
to communicate in a single-hop communication with the DFC.
These facts make LEACH unsuitable for large networks, as the
consumed energy to communicate the two farthest nodes may
be unaffordable. Based on its design, the expected benefits for
LEACH are the very low energy consumption and the simple
implementation, as it only involves some random decisions and
several control message interchanges.

2) Persistent: is categorized as message-efficient, as it uses
few control messages in the cluster formation. Its main goal
is to form clusters with equal cluster size B. The operation
of Persistent is the following: (i) the initiator nodes know the
a priori set parameter or budget B; (ii) each initiator evenly
distributes the remaining budget B − 1 among its neighbours;
(iii) the nodes that receive those messages re-distribute their
assigned budget among their neighbours except for the parent
node ; (iv) the messages propagate until the budget is ex-
hausted or there are no more available neighbours; (v) each
node informs its parent about the size of the formed sub-
tree; (vi) if the budget was not exhausted, it is re-distributed
among unexplored neighbours or those have already met the
previously allocated budget, in order to find new nodes to
include in this cluster; (vii) the algorithm terminates when the
initiator consumes the budget B or when no further growth is
possible. Due to the latter, Persistent does not guarantee that
all cluster sizes are equal to B, as if it is not able to find
sufficient nodes, the cluster is smaller. In addition, Persistent
needs O(B2) control messages to form a cluster of size B [20],
which can be a quite high value depending on the multipliers
ignored in the notation O(·). A highly restrictive assumption
of Persistent is that the budget of B is a design parameter.
Depending on the chosen value, the clusters may be too large
to overcome the capacity issues or may be too small and
difficult the management task of the WSN.According to the
design of the Persistent algorithm, the expected benefits are
homogeneous cluster configuration and low amount of control
messages transmitted through the network.

3) SODCC: is a self-organized clustering algorithm devel-
oped for WSN that uses the statistics of the measured data as
significant part of the decision criteria for the cluster formation.
Specifically, this algorithm uses second-order statistics to com-
pute the minimum number of linearly independent components
in the cluster, i.e., the number of principal components that
explain most of the variance in the data or, similarly, the
dimension of the signal subspace. With this approach, the
SODCC algorithm ensures that most of the variance in the data
is captured within that cluster. It means that, if the cluster is
small, only the data from a small number of stations are needed

to extract the eigenvalues of the largest principal components
that explain their variance. Thus, the cross-correlation of the
data among those stations is high. On the other hand, if
the cluster is large, the data from more stations are needed
to explain the same percentage of the variance. Therefore,
SODCC ensures that closely correlated data series are clustered
by using the dimension of the signal subspace.

The operation of SODCC is the following: (i) nodes ran-
domly decide according to an a priori set probability P
to become CH and form the first clusters in the network,
preferably small-sized clusters (the seed of the final clusters);
(ii) once all nodes belong to a cluster, either as sensor nodes
or CHs, the sensor nodes measure and send their data to the
CH; (iii) once the CH has gathered enough data, it estimates
the signal subspace dimension d̂ of the data using the Fast
Subspace Decomposition (FSD) procedure [22]; (iv) if d̂ is
smaller than the cluster size Nc, that cluster is stable; (v) if d̂ is
greater than the cluster size, that cluster is not stable, meaning
that signal and noise subspaces are not separable. In this last
case, the cluster initiates a fusion process with a neighbour
cluster in order to adapt the clustering configuration to these
large-scale correlations of the data that are found in this area
of the WSN. The main drawbacks of the SODCC algorithm
are the additional computational burden needed to apply the
FSD algorithm and the transmission of the data between sensor
nodes and CH during the clustering. The expected benefits of
SODCC are a data-coupled clustering configuration, meaning
that the statistics of the measured data are as similar as possible
within any given cluster. Moreover, as SODCC performs the
clustering in terms of second-order statistics, a processing
algorithm that also uses second-order statistics will obtain
better quality results.

C. Processing algorithms
It is well accepted in the scientific community that the

measurements made by nearby sensors in a real environment
usually have spatial correlation. Therefore, we use three pro-
cessing algorithms that take advantage of this assumption
(some are more effective than others) to reduce the amount
of transmissions through the WSN.

1) Approximate Data Gathering - Cluster Head (ADG-CH):
is the simplest possible in-network processing algorithm for a
WSN and transmits the lowest amount of bytes through the
WSN. The key issue of this algorithm is that, as nearby nodes
should have high spatial correlation [23], [24], a unique sample
should be sufficient to represent all the measurements made
by a group of nearby nodes. As the WSN is partitioned by
some clustering algorithm it is reasonable to assume that the
measurement from any node belonging to that cluster could
represent the measurements from the entire cluster in the DFC.
It is also reasonable to assume that the representative node
should be the CH.

2) Approximate Data Gathering - Mean (ADG-M): it is an
improvement of ADG-CH, as the bytes transmitted to the DFC
are a better representation of the measurements made by a
cluster. This algorithm transmits the average value of the data
measured by the cluster to the DFC. The disadvantages are
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that all the nodes have to transmit their measurements to the
CH, and that the CH spends additional energy computing the
average of the measurements. On the other hand, the main
benefits of ADG-M are both that the DFC receives a better
approximation of the values measured by the nodes and that
the values received by the DFC are not susceptible to errors
of the electronics of the CH. This type of data processing was
also used in [19], [25], [26], where either CHs or specialized
aggregator nodes performed an average aggregation function.

3) Compressive-Projections Principal Component Analysis
(CPPCA): is an algorithm based on Principal Component
Analysis (PCA) that was first proposed for satellite hyperspec-
tral imagery compression [27]. This is the processing algorithm
with the highest computational burden that we use in this
work. The operation of the algorithm is the following: (i)
the measured data by a group of Ni nodes (i.e. the cluster)
are gathered by a representative node (i.e. the CH); (ii) the
CH assembles the data matrix X of size Ni ×M and it is
encoded by performing an orthonormal projection to a lower-
dimension random space P of dimension K, with the orthonor-
mal compressed projection matrix P; (iii) the representative
nodes transmits the encoded data to the DFC; (iv) the DFC
estimates the covariance matrix of the received data Σ̃ using
the Rayleigh-Ritz (RR) procedure [28]; (v) the DFC uses the
estimated matrix and performs a Projections Onto Convex Sets
[27] optimization to resolve the Li principal eigenvectors;
and (vi) the DFC uses the eigenvectors to recover the PCA
coefficients and obtain the highest possible information about
the measured data. The relation between Σ̃ and Σ of the
measured data is established by means of matrix P:

Σ̃ = P>XX>P/M = P>ΣP (1)
CPPCA can be adapted to the capacity needs of the WSN,

as the amount of bytes transmitted are controlled by the ratio
K/N . A lower K/N ratio leads to a higher data compression
and a lower amount of bytes transmitted to the DFC. The
disadvantage of this algorithm is the high computational load
and the memory requirements of the sensor nodes to be able
to store the gathered data, and to perform the projection onto a
different subspace (i.e. matrix multiplication). In addition, the
amount of bytes transmitted between the nodes and the CH,
and between the CH and the DFC can be significantly higher
than the previous two algorithms. On the other hand, the CP-
PCA algorithm allows for the adjustment of the compression
ratio (K/N ) to control the amount of transmitted bytes and the
quality of the data decoded by the DFC. Moreover, as CPPCA
is PCA-based, the second order statistics of the data decoded
by the DFC are ensured to be as similar as possible with the
one of the measured data. This type of data analysis was also
used in [27] to recover hyperspectral images or in [5] and [6]
as an in-network processing algorithm.

The computational cost of the CPPCA procedure scales
as O(L2

i × M), mainly due to the inherent cost of the RR
procedure. Moreover, this algorithm lacks of adaptability in a
changing environment. In the present work, although we use
the original version of the algorithm proposed in [6], we can
formulate a low-complexity adaptive version of the CPPCA

algorithm where both the extraction of the eigenpairs and the
calculation of the dimension d of the signal subspace can be
done by an alternative procedure: the extended PASTd [29].
This modification could be also used by SODCC to determine
the signal subspace dimension d instead of the FSD [22]
statistic.

The covariance matrix is substituted by the exponentially
weighted sample covariance matrix, defined as

Σ(t) = βΣ(t− 1) + XX>(t) (2)
where 0 < β < 1 is a forgetting factor, and the index t is
used to indicate the multiples of M data samples that are used
to update the weighted sample covariance matrix. Therefore,
in batches of M , the data are processed and new eigenpairs
and dimension d are extracted, either by means of the FSD
procedure or the PASTd procedure.

The low-complexity version of the CPPCA can be imple-
mented substituting the RR estimation by the PASTd estima-
tion [29], using either the Akaike Information Criterion (AIC)
or the Minimum Descripton Length (MDL) criterion [30] as
substitutes for the FSD criterion for rank subspace estimation.

The resulting computational complexity of the PASTd-
CPPCA scales as O(Li ×M), therefore achieving high gains
in terms of operations and energy expenditure at identical error
thresholds for the eigenpair recovery. However, even in quasi-
static environments (in terms of eigenpair variation) such as
the ones explored in the present work, the convergence times
almost double those of the RR adaptive version of CPPCA
[31], [32]. Therefore, in the following we will use the CPPCA
version presented in [27] and previously used for WSN in [6].

IV. EXPERIMENTS

In this work multiple independent computer simulations
using actual WSN temperature data and different network
settings where performed. Each of these network settings used
different combinations of clustering and in-network processing
algorithms. These experiments allow us to assess the network
management facility, calculate the energy consumption of
multiple network settings and analyze the tradeoffs among
transmission energy saving, processing energy consumption,
and improvement of the reconstruction error. In this section,
we describe the dataset used in our simulation, the network
setting, and the outputs of our experiments.

A. Dataset
The dataset contains air temperature data gathered from the

LUCE deployment of the Sensorscope project [33]. Figure 1(a)
shows the location of N = 47 sensor nodes, selected from
uniform height and that form a 2D network. Figure 1(b)
represent the schematic view of this WSN. This figure includes
an example of a generic temperature field represented as
isothermal lines. Computer simulations involve data trans-
mission to a fixed DFC; without loss of generality and for
simplicity’s sake, the DFC is located at [150, 500].

The dataset contains M = 104 samples per sensor, mea-
sured during the last week of April 2007 (Ts = 60s). The
preprocessing includes : (1) imputation of the missing data
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Figure 1. (a) Location of the N = 47 sensor nodes used for the
computer simulations. Reproduced by permission of swisstopo (BA13063).
(b) Schematic representation of the WSN with a temperature field example.
The red dots represent the sensor nodes.

(4.08% of all samples) and the outliers (0.14% of all samples)
by the previous available value, (2) subtraction of both trend
and seasonal components and, (3) normalization of dynamic
range to the support [−1, 1]. The total computational burden
of this preprocessing is O(M) due to the operations needed
for the second part, which are light enough to be performed
by the sensor nodes of a WSN.

This dataset has been previously used to test the perfor-
mance of CPPCA in a WSN with no clustering algorithm [5]
and SODCC+CPPCA algorithms in a WSN [6]. However,
these previous works are focused based on error reconstruction
results.

B. Network settings
Several network settings are used in the computer simula-

tions, each containing a clustering and an in-network process-
ing algorithm. Figure 2 shows the schematic representation of
the operation of each network setting as graphical examples,
in order to clearly distinguish the fundamental differences
between each case. The amount of independent simulations
performed is 103 for LEACH and 105 for both Persistent and
SODCC algorithms. Several additional considerations have to
be taken into account regarding the particular configuration
used, i.e.:
1) The LEACH + CPPCA configuration is not used, as

CPPCA [27] is formulated for static node set and LEACH
does not allow for this feature.

2) For a fair comparison, all network settings that use ADG-
CH or ADG-M report the data through the DFC in suc-
cessive rounds. This fact is motivated by the LEACH
algorithm which performs a new clustering configuration
in each round. Therefore the CH (the node that transmits
data to the DFC) is different in each round. As a result,
although Persistent and SODCC maintain the clustering
configuration through all the simulation, the representative
node is rotated among the nodes belonging to the cluster.

3) The p = 0.35 parameter for LEACH is selected to be equal
to the P = 0.35 parameter for SODCC, used in all the
simulations performed with this second algorithm.

4) The p = 0.5 parameter for LEACH is selected to analyze
the performance of these network settings when the amount

of transmitted data is half the amount of measured data.
These cases are similar to the network settings that use
CPPCA with K/N = 0.5.

5) The network settings that use CPPCA with K/N = 0.3
are selected to analyze the performance of the WSN with
high data compression, i.e. the amount of transmitted data
is very low with respect to the amount of measured data.
These cases are similar to the network settings that use
LEACH with p = 0.35.

6) The network settings that use CPPCA with K/N = 0.8
are selected to analyze the performance of the WSN with
low data compression, i.e. the amount of transmitted data
is similar to the amount of measured data.

C. Outcomes
The outcomes that we evaluate for each configuration in

Section V are: (1) average number of clusters, to assess the
clustering algorithm management issues; (2) Signal to Noise
Ratio (SNR), to analyze the data reconstruction quality; (3)
energy consumption, to evaluate the network lifetime. The
calculation of each of these outcomes is explained in the
following.

1) Number of clusters: To evaluate the ease of management
of the clustering configuration once the WSN is clustered,
we compute the average number of clusters obtained in each
simulation. Obviously, a WSN with a constant number of
nodes N divided into more clusters leads to clusters with
smaller sizes. The management of a WSN with many small
clusters is more complicated as it requires a higher amount of
signaling between CHs and between CH and the DFC.

2) SNR: To assess the data reconstruction quality, we use
the SNR to quantify the relation between the power of the
signal of interest, i.e. the original sample data x, and the
reconstruction error or noise, i.e. the difference between x and
the data obtained at the DFC x̃. The SNR is calculated for
each independent simulation with a particular combination of
parameters as:

SNRsim =
E
[
(x− E[x])2

]

E
[
(x− x̃)2

] (3)

and for each network configuration as:
SNR = E

[
SNRsim

]
(4)

where E[·] represents the expected value of a random variable.
3) Energy consumption: To estimate the consumed energy

we differentiate between the amount of transmitted bits, re-
ceived bits and, performed operations. The value of these
estimations is an approximation in simulations, and it depends
highly on hardware specifics, but we tried to remain accurate
allowing for generalization. The consumed energy in each case
is computed as:
• Transmission:
Energy (J) = ct × total transmitted bits× distanceη
• Reception: Energy (J) = cr × total received bits
• Process: Energy (J) = cp × total performed operations
being ct, cr, cp three constants (dependent on electronic
devices) for the amount of energy needed to transmit and
receive one bit, and to process one operation, respectively.
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Figure 2. Schematic representation for each clustering and in-network processing algorithms combinations used in the computer simulations. Rows are for
different clustering algorithms and columns are for in-network processing algorithms. The first two columns are both for ADG-CH, representing two consecutive
rounds. Black dots represent the sensor nodes, discontinuous black line represent the cluster frontiers, blue arrows represent the intra-cluster packet transmission
and red arrows represent the CH to DFC transmission. Thicker red arrows represent higher amount of packet transmissions.

The path loss exponent is set to η = 3, a good tradeoff
between the free space propagation (η = 2) and indoor
propagation (η ∼ 4) [34]. Given that energy consumption is
greatly influenced by particular hardware implementations, we
provide relative energy consumption outcomes. As a guideline
we follow previus accepted procedures [4], [35], i.e.: 1)
Reception usually has an energy cost an order of magnitude
lower than to Transmission, as Reception does not change
transmitting power and, 2) Transmission has an energy cost

two orders of magnitude higher than Process, due to the low
energy efficiency of RF power amplifiers. These differences
can increase up to three orders of magnitude for specific
hardware.

The estimation of the number of operations required for each
algorithm is also performed. SODCC involves the estimation of
the signal subspace dimension with FSD, which is performed
for all intermediate and final clusters. Intermediate clusters are
by definition unstable (see Section III-B), thus cluster fusion
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Figure 3. Histogram (left) and time evolution (right) of the signal subspace
dimension of the dataset estimated with FSD using an increasing amount of
samples per node.

must be performed. Final clusters do not require any cluster
fusion as they are stable and are the outcome of the clustering
algorithm. Therefore, the amount of operations needed by the
SODCC algorithm is d̂ × (4Nc)

2 for each intermediate and
final cluster. CPPCA involves matrix multiplications, so the
total amount of operations is 2 × KNcM . Finally, as the
computational burden of LEACH, Persistent and ADG-CH is
much lower [26], we neglect the amount of operations needed
in these last three cases.

V. RESULTS

In the present Section we show and analyze the results (see
Section IV-C) obtained for all the fourteen network settings
(see Section IV-B). Firstly, we assess the time structure of the
data and the network synchronization issue, in order to better
understand the results obtained for each case.

A. Structure of data

The spatio-temporal structure of the sensed data in the
WSN is irrelevant to the performance of both LEACH and
Persistent. However, it plays a decisive role in the second
phase of SODCC. The clusters formed by SODCC are located
around sets of proximal nodes whose data variance can be
explained with a minimal signal subspace dimension of the set
[36]. Thus, the structure of the data affects both the clusters
locations, and their sizes.

Figure 3 shows the time structure of the temperature dataset,
obtained by performing a temporal analysis of the FSD statis-
tic. The most probable dimension of the signal subspace in
the whole dataset is d̂ = 6. Thus, it can be expected that
configurations with an average size of 6 nodes per cluster
have better performance, from the data quality point of view,
as the spatio-temporal correlations of the temperature field
will be better captured. This value also guided the set of the
configuration parameter B = 6 for the Persistent algorithm,
required prior to its initialization.

B. Network synchronization

Node synchronization is crucial depending on the mea-
surements carried out by the WSN. In the present work, it
is presumed that the synchronization has been independently
acquired (e.g. with a centralized synchronization configuration
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Figure 4. Mean amount of clusters in the WSN, computed for each
combination of clustering and in-network processing algorithms.

or a broadcasting setting) from the clustering protocols. There-
fore, the additional overhead can be considered identical for
all the presented algorithms.

However, if we presume that synchronization is performed
at cluster level, local message interchange to acquire synchro-
nization depends on the total number of nodes in the network.
As the authors previously pointed out [6, Eq. (15)], the average
cluster size function for the SODCC algorithm scales as

〈Ni〉 =
2

τ − 1
+

2N2−τ

2− τ (5)

where τ = 1.13 in the present case. Thus, the SODCC
algorithm exhibits scalability as 〈Ni〉 grows at a similar rate as
N . Therefore, the growth of the synchronization overhead is
moderate versus other clustering algorithms that do not exhibit
scalability.

C. Number of clusters

The average number of obtained clusters, and therefore
the ease of the network management, shows huge differences
between the fourteen considered strategies (see Figure 4). For
LEACH strategies, approximately one in every three nodes
are CH for p = 0.35, leading to an average amount of clusters
close to one third of the network size (N = 47). Similarly,
for p = 0.5, the average amount of clusters is close to half
of the network size. Also due to the pre-selected configuration
parameters, strategies that use Persistent lead to an average
amount of clusters close to 8, meaning that approximately one
sixth of the nodes in the network are CH.

The behaviour of the SODCC algorithm is slightly different.
From Figure 3 we deduce that the expected average cluster size
should be close to 6 and that the average amount of clusters
should be close to 8. However, it seems counterintuitive that
the average amount of clusters is close to 6 and the average
cluster size is close to 8. This fact reveals that, although 6 is
a highly probable number of nodes per cluster, larger clusters
exist. The minor variations in the number of clusters for the
same clustering algorithm is due to the different initial random
conditions. These variations are statistically negligible.

The relation between the network management facility and
the average amount of clusters is reversed. Therefore, under
this assumption, we can conclude that the network manage-
ment for a WSN with N nodes clustered with SODCC is
easier, compared to the LEACH and Persistent algorithms.
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D. Data reconstruction quality
The fidelity of the reconstruction is a generally overlooked

aspect for WSN performance evaluation. Figure 5 shows the
assessment of the data quality by means of the SNR of
the dataset reconstruction in the DFC. The LEACH+ADG-M
strategy predictably fares better than its ADG-CH counterpart,
for both values of p. The statistical dispersion of the SNR
obtained for all LEACH+ADG strategies is minimal, due to
the high temporal and spatial granularity of the nodes involved
in the measuring process. For example, for LEACH+ADG-CH
with p = 0.5, the DFC receives on average data from half of
the nodes in one round and from the other half of the nodes
in the next round. The low dispersion in SNR for both ADG
algorithms is also apparent in all other combinations, with a
loss of 2 dB approximately.

Strategies involving CPPCA are distinguished by a large
dispersion in the reconstruction performance at any com-
pression ratio. Moreover, the reconstruction performance gets
exponentially better as the compression ratio K/N is reduced,
obtaining improvements of 10 to 12 dB compared with Per-
sistent+ADG and SODCC+ADG strategies and of 5 to 7 dB
with LEACH strategies.

Thus, although the LEACH strategies result in fair and reli-
able performance figures, the usage of CPPCA holds in store
a huge potential for improvement in performance. No clear
advantage in reconstruction performance can be seen between
the Persistent and SODCC strategies involving CPPCA. But
bear in mind that, until SODCC is self-organized in terms
of nodes-per-cluster, Persistent needs this proportions to be
preset. With the optimal setting of Persistent to B = 6 nodes
per cluster, the difference in SNR is neglectful. However, this
should not be the case in a general setting where SODCC
is bound to outperform Persistent as it operates without prior
settings.

E. Energy consumption
Figure 6 shows the total energy consumption of the network

for Transmission (top subfigure), Reception (middle) and Pro-

0,01

0,1

1

e-05

001

,001

0,01

0,1

1

,001

0,01

0,1

1

Transmission

Reception

Processing

10�2

1

1

0.1

0.1

10�4

1

0.01

Clustering
SODCCB = 6PersistentLEACH

| {z }| {z }| {z }p = 0.35
| {z }| {z }

p = 0.5

K/N = 0.3 K/N = 0.5 K/N = 0.8
CPPCAADG-CH ADG-M

Processing

Figure 6. Energy consumption for each of the clustering and in-network pro-
cessing algorithms combinations. The total energy consumption is divided in
energy for transmission (top), reception (middle) and processing (bottom). In
each case, the energy consumed is normalized with respect to the combination
with higher energy consumption.

cess (bottom), relative to the maximum energy consumption
in each case. Note that there are clear differences between the
fourteen network strategies.

For the Transmission case, all LEACH strategies consume
more energy than any other considered strategy, mainly due to
the single-hop communication with the DFC. In more detail,
LEACH+ADG-M requires more energy due to higher data
traffic between sensor nodes and the CH. Strategies involving
either Persistent or SODCC are one order of magnitude below
those with LEACH, with minimal differences among any
processing technique.

On the other hand, the energy consumption for LEACH
strategies in Reception is, in general, two orders of magnitude
below those of the other clustering algorithms. However, the
Persistent+ADG-CH strategy allows us to observe an addi-
tional impact of the LEACH cluster formation in the energy
efficiency. The corresponding result indicates a significantly
lower consumption when compared with LEACH+ADG-CH.
This in-network processing strategy does not involve commu-
nication between sensor nodes and the CH, and all packet
receptions are caused by the cluster formation process. There-
fore, the energy required by LEACH to operate is two orders
of magnitude higher than the one required by Persistent. As
SODCC includes the calculation of the FSD statistic, which
requires communication between sensor nodes and the CH,
the previous analysis can not be performed with the same
assumptions.

Regarding Processing, the assumption that ADG-CH has
negligible computational burden enables the analysis of the
energy invested by SODCC estimating the FSD signal sub-
space dimension. By using the results of the SODCC+ADG-
CH setting, it is clear that the cost associated with the FSD
calculation is minimal. The rest of the strategies have energy
consumptions that span differences in less than an order
of magnitude. Based on these results, we confirm that it
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is always preferable to use processing-oriented strategies to
transmission-oriented ones with respect to the power budget.

F. Discussion
In summary, we see that, the LEACH strategies perform

reliably in terms of measurement field reconstruction, but they
are not competitive with respect to Persistent or SODCC in
terms of the energy consumption for both the Transmission (the
most power consuming subsystem in a WSN) and Reception
cases. This seems to be contradictory with the claims that
LEACH is an energy efficient WSN clustering algorithm.
Typically, LEACH implementations have used low values of
p ≈ 0.1 [10], resulting in larger clusters that, in conjunction
with the ADG algorithms, assuredly degrade the fidelity of
the measured field reconstruction. Furthermore, there is only a
small margin for improvement in LEACH strategies in terms
of data quality as more sophisticated in-network processing
requires critical changes in the LEACH operation.

By comparing the self-organizing algorithms Persistent and
SODCC, no significant differences can be perceived either
in terms of reconstruction fidelity or in power consumption.
However, as noticed in the previous subsections, while Persis-
tent requires the a priori set budget B, i.e. the desired cluster
size, no prior adjustable parameter is needed for SODCC. The
optimal selection of B for a high data quality has to consider
both the node deployment density and the spatial correlations
of the data [6]. But, while the node density can be easily
known, the spatial correlation of the data is considerably more
difficult to obtain or estimate.

The network management once the cluster configuration
is finished seems to be easier in the case of SODCC, as a
lower amount of clusters is obtained. This result represents an
additional benefit of SODCC over Persistent, and an additional
support for the use of data-coupled clustering algorithms.
Cluster configuration, which is coupled to the measured field,
results in the lowest amount of clusters with the minimum
cluster size to allow an efficient data processing. Therefore,
these approaches are able to offer a better usage of the overall
resources of the WSN.

The usage of CPPCA significantly contributes to the reduc-
tion of Transmissions energy consumption. Furthermore, the
potential to increase the fidelity of the reconstruction (increas-
ing K/N ) with limited energy consumption is remarkable.
Therefore, from the combined restrictions of reconstruction
fidelity, minimum energy consumption and no prior required
knowledge or settings, the SODCC+CPPCA setting outper-
forms any of the other examined strategies.

The previous discussion refers to the performed experi-
ments, with temperature data. The advantages of temperature
data are the slow temporal variation and that the second order
statistics are suitable data representatives. However, for differ-
ent environments where other physical variables are measured,
the second order statistics may be not so suitable. Some
examples of these kind of data include WSNs that monitors
the opening of doors and windows for security applications or
WSNs for rainfall monitoring. For these environments, where
the second order statistics of the data are not the best guides

for network clustering, LEACH+ADG strategies would be
more suitable choices, even at the expense of a higher energy
consumption.

VI. CONCLUSIONS

In the present work we have presented a thorough evaluation
of the performance of the SODCC+CPPCA network setting,
in terms of both the data quality and the energy efficiency,
as they are the usual tradeoffs. We have shown that energy
efficiency is not sacrificed for diminishing the distortion in
the reconstructed field. Moreover, we have shown that the
network management is facilitated by SODCC, as the cluster
configuration is consistent with the internal structure of the
measured data. We have also performed a fair comparison
with other network settings that also combine clustering and
in-network processing algorithms. Strategies with single-hop
communications, as LEACH, exact a penalty on energy effi-
ciency and strategies that used a representative node, as ADG-
CH, achieved energy efficiency at the cost of losing relevant
data from the correlated nodes in the cluster. In addition, the
requirement of the a priori determination of the budget B for
Persistent, a self-organized clustering algorithm, was critical
for its optimal behaviour. Only the SODCC+CPPCA strategy
achieved a perfect balance between quality of reconstruction,
controlled by the compression ratio, and the energy expen-
diture of the data gathering process. Thus, a change in the
design trend for WSN algorithms from transmission-oriented
to processing-oriented ones is encouraged.

As future extensions, the adaptive version of the SODCC
algorithm that allows for the reconfiguration of the clusters
following the evolution of the characteristics of the measured
data is being developed. In this case, the energy expenditure
will also depend on the rate of variation of the measured
field. Devising robust algorithms to preserve the balanced
performance of the SODCC algorithm in rapidly changing
environments will also be the focus of future research.
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