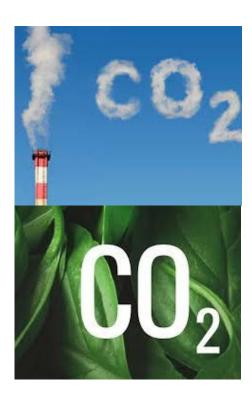
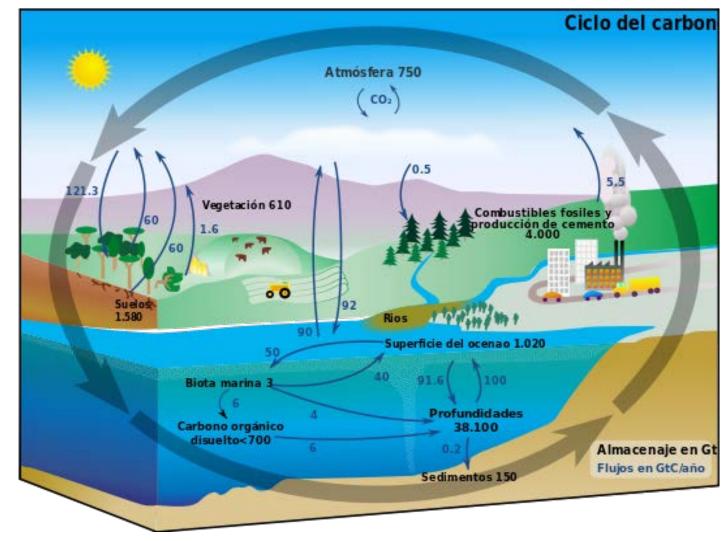
UTILIZACIÓN DE CO₂: USOS DIRECTOS Y CONVERSIÓN HIDROTERMAL

Laura Quintana Gómez



- Usos directos del CO₂
 - Industria alimentaria y bebidas
 - Agricultura
 - Protrección contra incendios
 - Agente de limpieza
 - Recuperación optimizada de petróleo
 - CO₂ supercrítico
- Conversión de CO₂
 - Reacciones hidrotermales



UTILIZACIÓN de CO₂

VENTAJAS

ABUNDANTE

NO TÓXICO

ORIGEN

PLANTAS NH₃

DEPÓSITOS NATURALES

CCS vs **CCU**

CO₂ EN INDUSTRIAS DE ALIMENTACIÓN Y BEBIDAS

- CO₂ en bebidas carbonatas
 - Efecto chispeante y gaseoso
 - Efecto microbianiano

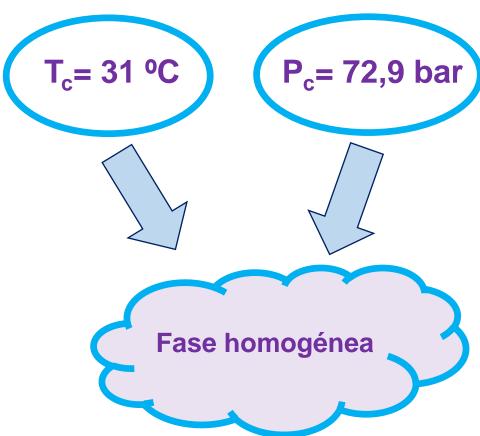
- Congelación criogénica
- Transporte
- Aturdimiento de animales

CO₂ EN LA AGRIGULTURA

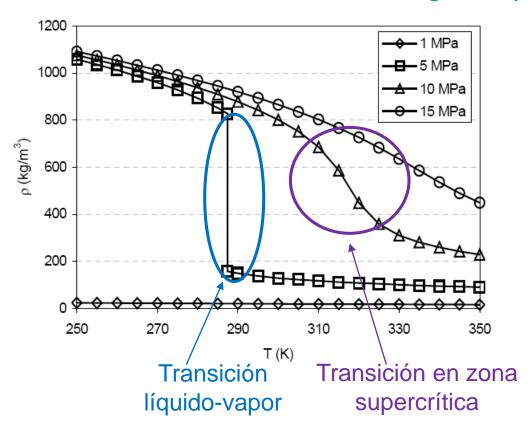
- Incrementa la velocidad de la fotosíntesis
- Estimula el crecimiento hasta un 25 %
- Tiempos de cultivo más cortos
- Mayor calidad debido a un crecimiento más fuerte
- Ejemplos: tulipanes, rosas, tomates, pepinos, fresas, berenjenas, cannabis,...

OTROS USOS DEL CO₂

- Agente contra incendios
 - Uso de CO₂ en extintores: no deja residuo
 - Sustitución de O₂ en atmósferas explosivas
- Agente limpiador: hielo seco
- Neutralizador de pH
- Recuperación optimizada de petróleo (EOR)



CO₂ SUPERCRÍTICO


FLUIDOS SUPERCRÍTICOS

PROPIEDADES DE LOS FLUIDOS SUPERCRÍTICOS

Intermedias entre las de los gases y los líquidos

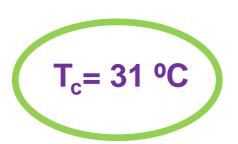
-La zona supercrítica comprende una zona de transición entre las zonas del líquido y del vapor

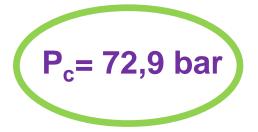
- En esa zona, las propiedades varían de forma suave, no de forma abrupta como en un cambio de fase líquido-vapor

FLUIDOS SUPERCRÍTICOS

COMPARACIÓN DE ESTADOS

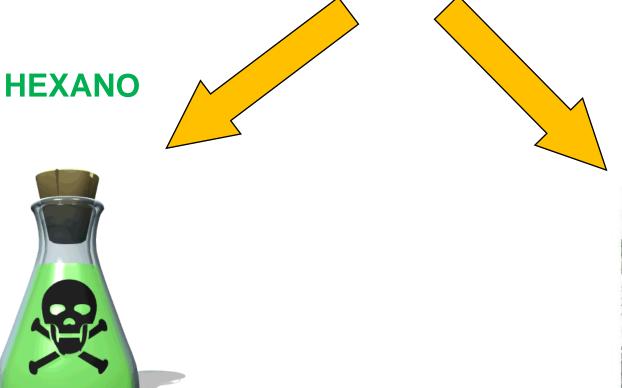
	GAS	FLUIDO SUPERCRITICO		LIQUIDO
	0.1 MPa, 298 K	P _c , T _c	4P _c , T _c	0.1 MPa, 288 K
$ ho$ kg/m 3	1	200 – 500	400 – 900	1000
η kg/(ms)	10 ⁻⁵	1.3·10 ⁻⁵	3.9·10 ⁻⁵	10 -3
<i>D</i> m²/s	10 ⁻⁵	0.7·10 ⁻⁷	0.2·10 ⁻⁷	10 ⁻⁹


CO₂ SUPERCRÍTICO



¿POR QUÉ CO₂ SUPERCRÍTICO?

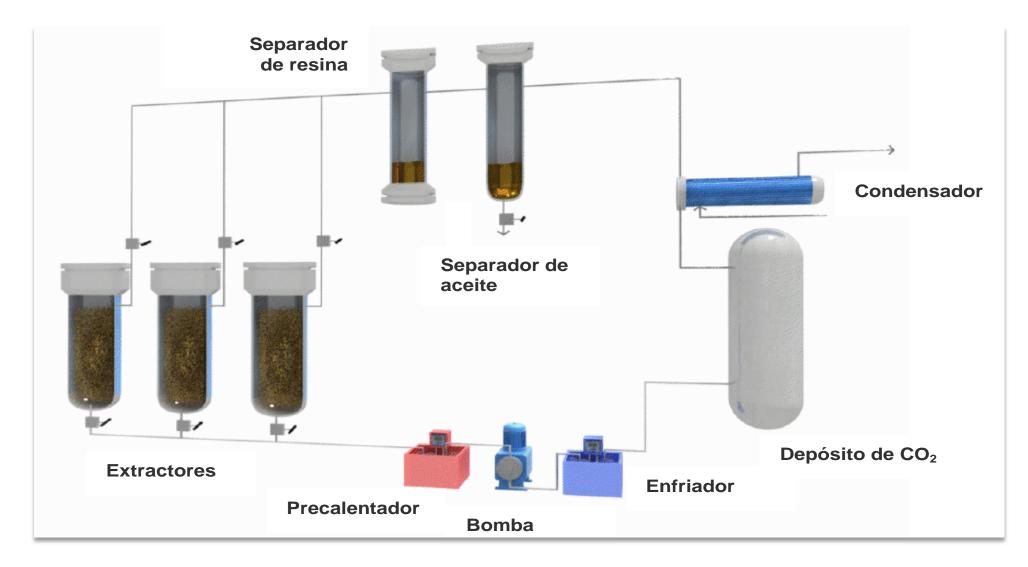
- Barato
- Abundante
- Condiciones de operación suaves
- Inerte
- No tóxico
- No inflamable
- Capacidad de solvatación y densidad similar a la de los líquidos
- Difusividad y viscosidad similar a la de gases


CO₂ SUPERCRÍTICO

¿POR QUÉ CO₂ SUPERCRÍTICO?

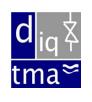
SEPARACIÓN DEL DISOLVENTE

 CO_2



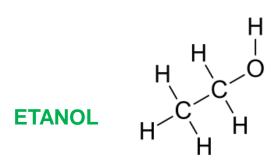
EXTRACCIÓN CON FLUIDOS SC

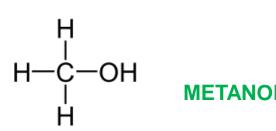
DESARROLLO INDUSTRIAL Y APLICACIONES


- Extracción de cafeína y otros alcaloides
- Aceites esenciales y especias
- Lúpulo
- Pesticidas en productos vegetales
- TCA del corcho
- Desengrasado
- Limpieza en seco de textiles

VENTAJAS

- Fácil separación producto-disolvente al final del proceso
- Fácil recuperación y recirculación del disolvente
- El aroma y sabor obtenido de los extractos es más natural
- Minimización de la degradación del producto
- Selectividad elevada Extracciones más rápidas y eficaces
- Eliminación de etapas de concentración
- Proceso sostenible e intensivo





CONDICIONES DE LA EXTRACCIÓN

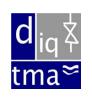
- Matriz vs extracto
- Pretratamiento del sólido
 - Molienda
 - Peletización aumenta porosidad del lecho
- Adición de agua (10-40 %)
- Ajuste del pH
- T = 35 40 °C (hasta 70 80 °C)
- P = 10 50 MPa
- Compuestos baja afinidad: adición codisolvente

PRINCIPALES EMPRESAS DESARROLLADORAS DE TECNOLOGÍA SUPERCRÍTICA EN EUROPA

FEYECON
Países Bajos

CHEMATUR Suecia **NATEX**

Austria



EXTRACCIÓN DE CAFEÍNA Y OTROS ALCALOIDES

- Europa, Asia, USA
- Desarrollo industrial 1978
- Extractores de 44 m³
- Desde 1989 extractores de 17-20 m³
- Más de 100000 t de café descafeinado se obtienen por esta vía en la actualidad en Europa y USA

ELIMINACIÓN DE PESTICIDAS DE ARROZ

- NATEX patente
- Planta en Taiwan desde 1997
- 24000 t anuales
- 3 extractores de 6 m³
- Presiones > 30 MPa
- Mantiene el aroma del arroz
- Minimiza o elimina tratamientos de lavado
- Elimina la presencia de insectos y huevos

Detalle de la carga de un extractor

EXTRACCIÓN DE ACEITES ESENCIALES Y ESPECIAS

- 60 000 t/año
- Europa, Canadá, Sudeste asiático, Nueva Zelanda
- Plantas con 2-3 extractores
- Volumen 0,2 0,8 m³
- Presiones: 10 55 MPa
- Varios separadores (fraccionamiento)

EXTRACCIÓN DE LÚPULO

- Plantas de extracción con CO₂ líquido a 6 MPa
- Plantas de extracción con CO₂ SC a 30-35 MPa
- Plantas con 3-4 extractores
- Volumen $4 6.5 \text{ m}^3$

Planta de extracción de lúpulo. Polonia

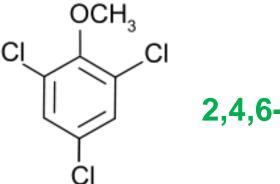
EXTRACCIÓN DE LÚPULO

Planta de extracción de lúpulo y alimentos funcionales. Nueva Zelanda, 2002

3 Extractores

Volumen 0,85 m³

Presión: 55 MPa



EXTRACCIÓN DEL TCA DEL CORCHO

- Demanda de 20000 millones de tapones de corcho anuales
- Mayores productores de corcho: España y Portugal
- Aroma perjudicial: 2,4,6-tricloroanisol (TCA)
- Impacto económico: más de 10000 millones de dólares

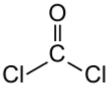
2,4,6-tricloroanisol



EXTRACCIÓN DEL TCA DEL CORCHO

- Primera instalación a gran escala: San Vicente de Alcántara (España)
- Año de instalación: 2005
- 3 extractores
- Volumen: 8 m³
- Procesamiento: 2500 t/año

CONVERSIÓN DE CO₂



APLICACIONES INDUSTRIALES

- Urea
- Ácido salicílico (proceso Kolbe-Schmitt)
- Síntesis de NaHCO₃-Na₂CO₃ (proceso Solvay)
- Carbonatos orgánicos: CO₂ en sustitución de fosgeno
- Síntesis de methanol (proceso ICI): gas de síntesis enriquecido con CO₂

APLICACIONES POTENCIALES

Ácido fórmico, metanol, metano, dimetiléter y etanol

fosgeno

Captura de CO₂: proceso

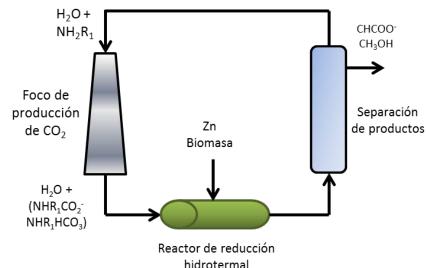
$$CO_2 + 2R^1R^2NH \leftrightarrow R^1R^2NCOO^- + R^1R^2NH_2^+$$
carbamato

$$CO_2 + R^1R^2NH + H_2O \leftrightarrow HCO_3^- + R^1R^2NH_2^+$$

bicarbonato

INCONVENIENTES¹

- Regeneración de la amina por desorción a 100-150 °C: gran consumo de energía
- Puede causar la degradación del disolvente
- Más de la mitad de la energía empleada se debe a la regeneración del disolvente
- Necesidad de comprimir y bombear la corriente de CO₂ generada a baja presión: gran coste



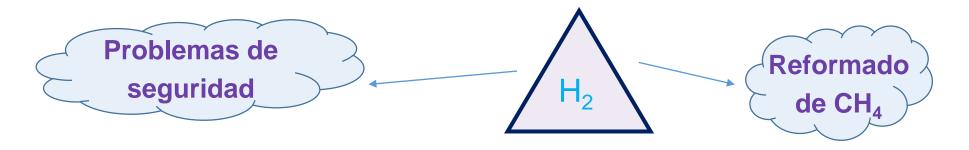
Captura y conversión de CO₂: proceso integrado

VENTAJAS

- Se eliminan los procesos de separación y purificación
- Se evita el uso de catalizadores complejos
- Carbamatos y carbonatos más reactivos que el CO₂ gaseoso
- Uso de metales o alcoholes (subproductos de la biomasa) como reductores
- El medio de reacción es agua: abundante, barato y medioambientalmente sostenible

Captura y conversión de CO₂: impacto socioeconómico

- Energía limpia, segura y eficiente: acoplamiento con centrales térmicas
- Flexibilidad producción de un amplio abanico de productos: MeOH, ácido fórmico...
- Proceso simple lo que favorece su implementación práctica
- Uso de derivados de biomasa como reductores: revalorización de residuos agroforestales
- Disminución importación de combustibles: reducción del precio de la energía
- Re-industrialización cerca de plantas térmicas



CONVERSIÓN HIDROTERMAL DE CO2

ORIGEN DE LA VIDA EN RESPIRADEROS OCEÁNICOS HIDROTERMALES

- Síntesis de compuestos oxigenados e hidrocarburos a partir de CO₂ empleando el agua como fuente de hidrógeno
- Serpentinización del olivino
 - Metano, etano y propano: 300 °C y 500 bar¹
 - Metano: 300 °C and 350 bar²

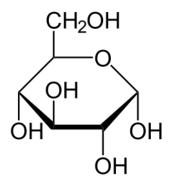
Respiraderos oceánicos hidrotermales

CONVERSIÓN HIDROTERMAL DE CO2

GLUCOSA COMO REDUCTOR

La glucose se obtiene a partir de biomasa lignocelulósica

La biomasa lignocelulósica se compone de celulosa, hemicelulosa y lignina



Disponible en todo el mundo, sostenible, y barato (residuo)

Conversión en productos útiles a través de procesos hidrotermales

Glucosa

CONVERSIÓN HIDROTERMAL DE CO2

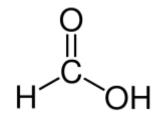
RESIDUOS DE BIOMASA COMO REDUCTORES

Reactor de 100 mL

Agujas de pino (PN)

Bagazo de caña de azúcar (SB)

Secado a 105 °C durante la noche


CONVERSIÓN HIDROTERMAL DE CO₂

¿POR QUÉ ÁCIDO FÓRMICO?

- Conservante
- Insecticida
- Intermediario industrial
- Almacenamiento de hidrógeno: celdas de combustible

Ácido fórmico

AGRADECIMIENTOS

- María Dolores Bermejo Roda
- Ángel Martín Martínez
- María Andérez Fernández
- Juan Ignacio del Río
- Miguel Viguera Sáenz
- Lourdes Calvo Garrido

FONDO EUROPEO DE DESARROLLO REGIONAL

MUCHAS GRACIAS

FONDO EUROPEO DE DESARROLLO REGIONAL

